
Department of Electronics and
Telecommunications

An introduction to MATLAB

Version 1.2

Anders Gjendemsjø

Contents

1 Introduction 1

2 Using MATLAB 2

2.1 MATLAB Help . 2
2.2 Matrices, vectors and scalars 2
2.3 Indexing matrices and vectors 3
2.4 Basic operations . 4
2.5 Complex numbers . 5

3 Graphical representation of data 6

3.1 Tools for plotting . 6
3.2 Printing and exporting graphics 10
3.3 3D plots . 10

4 Improving your MATLAB code 11

4.1 Script files . 11
4.2 Program flow . 11
4.3 Creating MATLAB Functions 12
4.4 Learning from existing code 13
4.5 Vectorizing loops . 13
4.6 Other useful details . 14

1 Introduction

MATLAB, short for Matrix Laboratory, is a simple and flexible
programming environment for a wide range of problems such as signal
processing, optimization, linear programming and so on. The basic
MATLAB software package can be extended by using add-on toolboxes.
Examples of such toolboxes are: Signal Processing, Filter Design, Statistics
and Symbolic Math. Comprehensive documentation for MATLAB is
available at

http://www.mathworks.com

In particular, an excellent (extensive) getting started guide is available at

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf

There is also a very active newsgroup for MATLAB related questions,

comp.soft-sys.matlab

MATLAB is an interpreted language. This implies that the source code is
not compiled but interpreted on the fly. This is both an advantage and a
disadvantage. MATLAB allows for easy numerical calculation and
visualization of the results without the need for advanced and time
consuming programming. The disadvantage is that it can be slow,
especially when bad programming practices are applied.

1

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

2 Using MATLAB

2.1 MATLAB Help

MATLAB has a great on-line help system accessible using the help
command. Typing help <function> will return text information about
the chosen function. For example to get information about the built-in
function sum type:

help sum

To list the contents of a toolbox type help <toolbox>, e.g. to show all the
functions of the signal processing toolbox enter

help signal processing

If you don’t know the name of the function but a suitable keyword use the
lookfor followed by a keyword string, e.g.

lookfor ’discrete fourier’

To explore the extensive help system use the "Help menu" or try the
commands helpdesk or demo.

2.2 Matrices, vectors and scalars

MATLAB uses matrices as the basic variable type. Scalars and vectors are
special cases of matrices having size 1x1, 1xN or Nx1. In MATLAB there
are a few conventions for entering data:

• Elements of a row is separated with blanks or commas.

• Each row is ended by a semicolon, ;.

• A list of elements must be surrounded by square brackets, [].

Example 2.1. Creating basic variables.

x = 1 (scalar)

y = [2 4 6 8 10] (row vector)

z = [2; 4; 6; 8; 10] (column vector)

A = [4 3 2 1 0; 1 3 5 7 9] (2 x 5 matrix)

2

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Regularly spaced values of a vector can be entered using the following
compact notation

start:skip:end

Example 2.2. A more compact way of entering variables than in Example
2.1.

y= 2 : 2 : 10

A=[4:-1:0;1:2:9]

If the skip is omitted it will be set to 1, i.e the following are equivalent

start:1:end and start:end

To create a string use the single quotation mark "’", e.g. by entering

x = ’This is a string’

2.3 Indexing matrices and vectors

Indexing variables is straightforward. Given a matrix M the element in the
i’th row, j’th column is given by M(i,j). For a vector v the i’th element is
given by v(i).
Note that the lowest allowed index in MATLAB is 1. This is in contrast
with many other programming languages (e.g. JAVA and C), as well as the
common notation used in signal processing, where indexing starts at 0.
The colon operator is also of great help when accessing specific parts of
matrices and vectors, as shown below.

Example 2.3. This example shows the use of the colon operator for
indexing matrices and vectors.

A(1,:) returns the first row of the matrix A

A(:,3) returns the third column of the matrix A

A(2,1:5) returns the first five elements of the second row

x(1:2:10) returns the first five odd-indexed elements of the

vector x

3

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

2.4 Basic operations

MATLAB has built-in functions for a number of arithmetic operations and
functions. Most of them are straightforward to use. Table 1 lists the some
commonly used functions. Let x and y be scalars, M and N matrices.

MATLAB

xy x*y

xy x^y

ex exp(x)

log(x) log10(x)

ln(x) log(x)

log2(x) log2(x)

MN M*N

M−1 inv(M)

MT M’

det(M) det(M)

Table 1: Common mathematical operations in MATLAB.

• Dimensions - MATLAB functions length and size are used to find
the dimensions of vectors and matrices, respectively.

• Elementwise operations - If an arithmetic operation should be
done on each component in a vector (or matrix), rather than on the
vector (matrix) itself, then the operator should be preceded by ".",
e.g .*, .^ and ./.

Example 2.4. Elementwise operations, part I

Let A =

[

1 1
1 1

]

. Then A^2 will return AA =

[

2 2
2 2

]

,

while A.^2 will return

[

12 12

12 12

]

=

[

1 1
1 1

]

.

Example 2.5. Elementwise operations, part II

Given a vector x, find a vector y having elements y(n) = 1
sin(x(n)) .

This can be easily be done in MATLAB by typing

y=1./sin(x)

Note that using / in place of ./ would result in the (common) error
Matrix dimensions must agree.

4

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

2.5 Complex numbers

MATLAB has excellent support for complex numbers with several built-in
functions available. The imaginary unit is denoted by i or (as preferred in
electrical engineering) j. To create complex variables z1 = 7 + j and
z2 = 2ejπ simply enter

z1 = 7 + j

z2 = 2*exp(j*pi)

Table 2 gives an overview of the basic functions for manipulating complex
numbers, where z is a complex number.

MATLAB

Re(z) real(z)

Im(z) imag(z)

|z| abs(z)

∠z angle(z)

z∗ conj(z)

Table 2: Manipulating complex numbers in MATLAB

5

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

3 Graphical representation of data

MATLAB provides a great variety of functions and techniques for graphical
display of data. The flexibility and ease of use of MATLAB’s plotting tools
is one of its key strengths. In MATLAB graphs are shown in a figure
window. Several figure windows can be displayed simultaneously, but only
one is active. All graphing commands are applied to the active figure. The
command figure(n) will activate figure number n or create a new figure
indexed by n.

3.1 Tools for plotting

In this section we present some of the most commonly used functions for
plotting in MATLAB.

• plot - The plot and stem functions can take a large number of
arguments, see help plot and help stem. For example the line type
and color can easily be changed. plot(y) plots the values in vector y
versus their index. plot(x,y) plots the values in vector y versus x.
plot produces a piecewise linear graph between its data values. With
enough data points it looks continuous.

• stem - Using stem(y) the data sequence y is plotted as stems from
the x axis terminated with circles for the data values. stem is the
natural way of plotting sequences. stem(x,y) plots the data sequence
y at the values specified in x.

• xlabel(’string’) - Labels the x-axis with string.

• ylabel(’string’) - Labels the y-axis with string.

• title(’string’) - Gives the plot the title string.

To illustrate this consider the following example.

Example 3.1. In this example we plot the function y = −x2 for x ∈ [−2, 2].

x = -2:0.2:2;

y = x.^2;

figure(1);

plot(x,y);

xlabel(’x’);

ylabel(’y=x^2’);

title(’Simple plot’);

6

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

Kataleeen BolBol
Highlight

−2 0 2
0

1

2

3

4

x

y=
x2

Simple plot

−2 0 2
0

1

2

3

4

x

y=
x2

Simple stem plot

Figure 1: Basic plots.

figure(2);

stem(x,y);

xlabel(’x’);

ylabel(’y=x^2’);

title(’Simple stem plot’);

The result is shown in figure 1.

Some more commands that can be helpful when working with plots:

• hold on / off - Normally hold is off. This means that the plot
command replaces the current plot with the new one. To add a new
plot to an existing graph use hold on. If you want to overwrite the
current plot again, use hold off.

• legend(’plot1’,’plot2’,...,’plot N’) - The legend command
provides an easy way to identify individual plots when there are more
than one per figure. A legend box will be added with strings matched
to the plots.

• axis([xmin xmax ymin ymax]) - Use the axis command to set the
axis as you wish. Use axis on/off to toggle the axis on and off
respectively.

• subplot(m,n,p) Divides the figure window into m rows, n columns
and selects the pth subplot as the current plot, e.g subplot(2,1,1)

divides the figure in two and selects the upper part. subplot(2,1,2)
selects the lower part.

• grid on / off - This command adds or removes a rectangular grid
to your plot.

7

Kataleeen BolBol
Highlight

Example 3.2. This example illustrates hold, legend and axis

x = -3:0.1:3; y1 = -x.^2; y2 = x.^2;

figure(1);

plot(x,y1);

hold on;

plot(x,y2,’--’);

hold off;

xlabel(’x’);

ylabel(’y_1=-x^2 and y_2=x^2’);

legend(’y_1=-x^2’,’y_2=x^2’);

figure(2);

plot(x,y1);

hold on;

plot(x,y2,’--’);

hold off;

xlabel(’x’);

ylabel(’y_1=-x^2 and y_2=x^2’);

legend(’y_1=-x^2’,’y_2=x^2’);

axis([-1 1 -10 10]);

The result is shown in figure 2.

Example 3.3. In this example we illustrate subplot and grid.

x = -3:0.2:3; y1 = -x.^2; y2 = x.^2;

subplot(2,1,1);

plot(x,y1);

xlabel(’x’); ylabel(’y_1=-x^2’);

grid on;

subplot(2,1,2);

plot(x,y2);

xlabel(’x’);

ylabel(’y_2=x^2’);

The result is shown in figure 3.

8

−3 −2 −1 0 1 2 3
−10

−5

0

5

10

x

y 1=−
x2 a

nd
 y

2=x
2

y
1
=−x2

y
2
=x2

(a) Plot with x from −3 to 3.

−1 −0.5 0 0.5 1
−10

−5

0

5

10

x

y 1=−
x2 a

nd
 y

2=x
2

y
1
=−x2

y
2
=x2

(b) Plot with x from −1 to 1.

Figure 2: MATLAB plot illustrating hold, legend, axis.

−4 −2 0 2 4
−10

−5

0

x

y 1=−
x2

−4 −2 0 2 4
0

5

10

x

y 2=x
2

Figure 3: MATLAB plot illustrating subplot and grid

9

3.2 Printing and exporting graphics

After you have created your figures you may want to print them or export
them to graphic files. In the "File" menu use "Print" to print the file or
"Save As" to save your figure to one of the many available graphics
formats. Using these options should be sufficient in most cases, but there
are also a large number of adjustments available by using "Export setup",
"Page Setup" and "Print Setup".

3.3 3D plots

We end this section on graphics with a sneak peek into 3D plots. The new
functions here are meshgrid and mesh. In the example below we see that
meshgrid produces x and y vectors suitable for 3D plotting and that
mesh(x,y,z) plots z as a function of both x and y.

Example 3.4. Creating our first 3D plot.

[x,y] = meshgrid(-3:.1:3);

z = x.^2+y.^2;

mesh(x,y,z);

xlabel(’x’);

ylabel(’y’);

zlabel(’z=x^2+y^2’);

The result is shown in figure 4.

−4
−2

0
2

4

−4
−2

0
2

4
0

5

10

15

20

xy

z=
x2 +y

2

Figure 4: 3D plot

10

4 Improving your MATLAB code

In this section we present programming tips for improving your MATLAB
code.

4.1 Script files

Script files, also called M-files as they have extension .m, make MATLAB
programming much more efficient than entering individual commands at
the command prompt. A script file consists of MATLAB commands that
together perform a specific task.
The M-file is a text file which can be created and edited by any plain text
editor like Notepad, emacs or the built-in MATLAB editor. To create a
script in MATLAB use: File - New - M-file from the menu. An example
script is shown below.

Example 4.1. Example script.

n = 0:pi/100:2*pi; % create an index vector

y = cos(2*pi*n); % create a vector y

plot(n,y) %plot y versus n

As shown above the %-sign allows for comments. Saving the script as
foo.m it can be executed as foo from the command prompt or by clicking
the run button in the MATLAB editor.
Script files are very practical and should be the preferred alternative
compared to the command prompt in most cases.

4.2 Program flow

As in most programming languages program flow can be controlled by
using statements such as for, while, if, else, elseif and switch. These
statements can be used both in .m files and at the command prompt, the
latter being highly inconvenient. Below we show some examples. Use help

to get more details.

• for - To print "Hello World" 10 times we write

for n=1:10

disp(’Hello World’);

end

for loops can in many cases be avoided by vectorizing your code,
more about that in section 4.5.

11

• if, else and elseif - Classics that never goes out of style.

if a == b

a = b + 1

elseif a > b

a = b - 1

else

a = b

end

4.3 Creating MATLAB Functions

Sometimes it is convenient to create your own functions for use in
MATLAB. Functions are program routines, usually implemented in M-files.
Functions can take input arguments and return output arguments. They
operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt.

Example 4.2. Create a function for calculating the sum of the N + 1 first
terms of geometric series. Let N < ∞.

Solution: The sum of the N + 1 terms of a geometric series is given by
ssum =

∑N
n=0 an. An implementation of this sum as a function accepting

the input arguments a and N is shown below.

function ssum = geom(a,N)

n=0:N;

ssum = sum(a.^n);

end

The function geom can then be called, e.g from the command prompt. The
function call geom(0.9,10) returns 6.8619.

To illustrate some more MATLAB programming we take on the task of
creating a MATLAB function that will compute the sum of an arbitrary
geometric series,

∑N
n=0 an.

Example 4.3. Create a function to calculate the sum of an arbitrary
geometric series.

Solution: For N < ∞ we know that the sum converges regardless of a. As
N goes to ∞ the sum converges only for |a| < 1, and the sum is given by
the formula

∑

∞

n=0 an = 1
1−a

. A possible implementation is given as:

12

function ssum = geomInf(a,N)

if(N==inf)

if(abs(a)>=1)

error(’This geometric series will diverge.’);

else

ssum=1/(1-a);

end

else

n=0:N;

ssum = sum(a.^n);

end

end

4.4 Learning from existing code

Wouldn’t it be great to learn from the best? Using the command type

followed by a function name the source code of the function is displayed.
As the built in functions are written by people with excellent knowledge of
MATLAB, this is a great feature for anyone interested in learning more
about MATLAB.

4.5 Vectorizing loops

As mentioned earlier, in MATLAB one should try to avoid loops. This can
be done by vectorizing your code. The idea is that MATLAB is very fast
on vector and matrix operations and correspondingly slow with loops. We
illustrate this by an example.

Example 4.4. Given an = n and bn = 1000 − n for n = 1, ..., 1000.
Calculate

∑1000
n=1 anbn and store it in the variable ssum.

Solution: It might be tempting to implement the above calculation as

a = 1:1000;

b = 1000 - a;

ssum=0;

for n=1:1000 %poor style...

ssum = ssum +a(n)*b(n);

end

Recognizing that the sum is the inner product of the vectors a and b,
abT,we can do better:

13

ssum = a*b’ %Vectorized, better!

4.6 Other useful details

• A semicolon added at the end of a line tells MATLAB to suppress
the command output to the display.

• MATLAB and case sensitivity. For variables MATLAB is case

sensitive, i.e. b and B is different. For functions it is case insensitive,
i.e. sum and SUM refers to the same function.

• Often it is useful to split a statement over multiple lines. To split a
statement across multiple lines, enter three periods "..." at the end of
the line to indicate it continues on the next line.

Example 4.5. Splitting y = a + b + c over multiple lines.

y = a...

+ b...

c;

14

